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I he Key Questions

What far-infrared observations bring unique,
essential information to investigations of large scale
structure and cosmology that are not addressed
adequately at other wavelengths?

Of those observations, which are best performed
from space?




dlieisual cosmological suspects

= Baryon acoustic oscillations
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dlieisual cosmological suspects
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Supernovae

Weallensing (not for galaxies, but for CMB)
EMBpelarization (different mission)
Darlcagescosmic dawn (?), reionization!

= Large scale structure and galaxy evolution -
yes!

= Sunyaez-Zel dovich cluster physics and
surveys - maybe




Key Science Questions

= What improvements in SZ science can be had
beyond Planck (or ground based CMB
experiments)?

= Reionization
= What were the galaxies like during reionization?
= When did the first stars and what were they like?
= The role of H2 in early star formation

= Galaxy formation and evolution
= AGN / star formation connection
= Relating galaxy formation to dark matter
» Full cosmic census of star formation




Approaches

= Sensitive, spectroscopic surveys over wide areas:
take advantage of low space background

& Cross-correlations with other surveys: take
advantage of wide sky coverage

= Large scale mapping: take advantage of
stability of space environment




SZ Surveys

2 Why SZ?
s Get mass of clusters

= Get diffuse gas content of the universe (not just
galaxies)

= Why space?
= [arge scale stability for extended emission

= Short wavelengths to understand contaminating
galaxy emission

= 57 increment necessary for modeling temperature
and relativistic effects

= All-sky, deep survey (particularly with stacking)




Spectroscopic Sensitivities
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Spectral line sensitivity
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Qutline

A brief summary of :

= Galaxy evolution

= The far-infrared background

= Connecting evolution to large scale structure

= The “intensity mapping” view of galaxies
= Some physics of far-infrared lines
= Views of reionization

B SZ surveys




AL ItS most basic, galaxy evolution
Means accounting for the build-up of
stars in galaxies:
Thescosmic star formation history
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di1eNmode of star formation appears to change
oVer.the last half of the Universe’s life

0.6 0.8 1.0 1.2
Redshift

Le Floc’h et al 2004




Dust hides about half the power

feleased by star formation and AGN
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Dust hides about half the power

feleased by star formation and AGN

Star form

ation
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tar formation in the universe is
hmately tied to the collapse of dark
matter halos

Millennium Run: |
10.077.696.000’ particles. »




However, the relation between dark
meatier halo mass and galaxy stellar
mass is complicated
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Various dattempts have been made to
meap galaxy properties onto halos,
6%,, abundance matching

Halo mass function Stellar mass function
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Crucially, however, redshift
information is missing

= Spectroscopic redshifts of submillimeter bright
sources are difficult to obtain in large numbers




Althoudgh redshifts are coming!
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Crucially, however, redshift
information is missing

= Spectroscopic redshifts of submillimeter bright
sources are difficult to obtain in large numbers

& The sources which are easy to measure are
bright (lensed) or central galaxies, which trace
the linear portion, but tell us less about 1-halo
clustering, and thus, environment

= Spectroscopy of optical galaxies is (largely)
telling us about a different population




HIR Lines in the Context of
Galaxy Formation

Traces the gas directly associated with star
formation

Not extincted by dust

Probes all ISM phases (neutral, ionized,
molecular)

= Traces thereby the history of star formation

= Traces chemical evolution

= Provides redshifts, thereby probing clustering

and environment effects
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artoon model of ISM

HII region, characterized by
ionization parameter U and
electron density n

[Fell]  [OI]

|OHI]
PDR

(historically, photo-

NII]k * [Sill]

[SIII] dissociation region,
now usually photon-
dominated region. The
point is that photons,

CI /CO not collisions,

dominate reactions)

[CII]

Molecular
cloud




Line ratio diagnostics with FS

Similar ionization
potentials and
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VIOTiIvVation for Intensity Mapping

Cosmology

* Evolution of

Large Scale Structure

* Galaxy Clustering
-Intrahalo correlations (“1-halo
term”)
-Halo-halo correlations (“2-halo
term”)




VIOTiIvVation for Intensity Mapping

Astrophysics

» Evolution of total luminosity of ISM coolants
- P(k) more sensitive to faint population of
line emitters compared to current
sensitivity for individual detections

* Evolution of metal abundance, ISM

properties via line ratios

* Evolution of SFRD

* Evolution of the cosmic mean of L,/ Lg




OtIvation for Intensity Mapping

Cosmology

» Evolution of
Large Scale
Structure
*Clustering
-Intrahalo
correlations
-Halo-halo
correlations

 Halo Model - SF
connection
-Most efficient
halo mass for
star
formation?

Astrophysics

* Evolution of
total luminosity
of ISM coolants
*Evolution of
metal abundance,
ISM properties
via line ratios

* Evolution of
SFRD

* Evolution of the
cosmic mean of

LX/ LFIR




_ vation of
tial fluctuations in
sity of spectral line

Fluctuations
characterized by power
spectrum




ensity mapping cre~*--
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Peep tomographic mapping
gnables a number of analysis
possibilities

Individual blind line detections

& Stacking using known optical redshifts —
average line properties of known galaxies

P(D) analysis — but now with luminosity
function of line emitters

Power spectrum analysis




Predicting the FIR line power

spectrum

Pclust
Recall,

Flow to evaluate the number density? Halo Mass Function?

Replace to allow integration of IR LF and,
relate luminosity in line X to IR luminosity via fy, = Ly /L; to
write:




Pbservational Strategy

tsurvey
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A(ROI] [(JY/S")?]

8y [y/sr)]
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jotalintensity can be tracked as well

Age of Universe [Gyr]
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What galaxies are probed via intensity mapping?

[ClI]158um at z = 1.5

SNRlMdUSt / SNRGSCIUSl

(Linear Term Only)

—1.4 —1.2 — 1.0




* Intensity as a function of wavelength:
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* Emission lines (“interlopers”) that originate at different z
may be redshifted into the wavelength targeted by the present

observation



* Intensity as a function of wavelength:

v LHZ
10000 oos L2112 1000
e L

10000 F

+
-Q
(@]

*
N

> o
N ONONN

1000

Line intensity [Jy/sr]

100

N

[Nelll]1¢
[SI]

10 100 1000
}\obs [/J’m]

* Emission lines (“interlopers”) that originate at different z may be
redshifted into the wavelength targeted by the present observation

* Use cross power spectrum of emission from different target lines at same
redshift to verify origin of signal (Visbal & Loeb 2010)

P, (k) = 8:S;bibj Puin (k) + Py, (k)

_[O1]63 x [OI11]88 at z = 1.5
- [Sill]35 x [Nelll]16 (or [SIII]19) at z = 3




mplications for Future Surveys

* Intensity mapping works best for instruments which:

* Are spatially confused in the traditional sense

* Can cover large areas with high sensitivity
* SPICA-SAFARI has these features. It can relatively quickly
make large area surveys that measure clustering using
mtensity mapping over the range 0.5 < z < 2.2 (or higher) in
a variety of lines
* These surveys are complementary to those obtaining
individual object detections
* Intensity mapping is particularly powerful when the
luminosity function is stepp
* More theoretical work needs to be done to show how to extract
maximum information from observations: think of the maturity of
CMB cosmological analysis




Rejonization and First Stars
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Cross-correlation

sform Fourier Transform




Probe of reionization process

Anticorrelated First of all: A way to verify cosmological

on large size origin of 21 cm signal
scales

Trace HII

el bubble growth:
Correlated : o Il Uncorrelated
on large 5 il on scales

size scales -2 ) T smaller than
at early g , S the HII bubble

stages = ' v . surrounding
(Galaxies r > ¥ ‘ il the galaxy

still rare. ' v ll (as ionized
They just f il bubbles grow,
starting 3 el signal becomes
“turning o 0=23710%rq/s/M,, ] KGRl

on” in large . 0 N larger and
scale k [h/Mpc] larger scales
overdense
regions)

See Figure 4 in Lidz et al (2009)




Intensity mapping of atomic FIR
lines is a useful means of
understanding the process of

Reionization, but this method
can be used to uncover
information about the sources
responsible for Reionization




Uncovering the Majority of
Galaxies at z > 6

Steep slope of luminosity
Function at high-z 2 Lower luminosity
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Desired Measurement Capabilities

Wavelength range
Angular resolution

Spectral resolution, (A/
AN)

‘ Continuum sensitivity

Spectral line sensitivity
Instantaneous FoV
Number of target fields
Field of Regard

wm
arcsec

dimensionless

uJy
101 W m~2

arcmin
dimensionless

ST

60 - 600 (3000 for SZ)
30
~1000

0.1 (5-sigma, 1 hour)
20
Y2 sky




